Lab Members

Nina Salama

Nina Salama

Title: Professor
Phone: 206.667.1540


Professor, Division of Human Biology
Professor, Public Health Sciences Division
Affiliate Professor, Basic Sciences Division
Affiliate  Professor, University of Washington Department of Microbiology

Vessel sculpture and Arnold Building on Fred Hutch campus

Hajirah Farah

Title: Undergraduate Researcher
Mark Guillotte

Mark Guillotte

Title: Post-Doctoral Research Fellow

I am investigating the innate immune response to H. pylori using both in vitro and in vivo models to better understand how infection with this pathogen leads to chronic inflammation.

Laura Jackson

Laura Jackson

Title: Graduate Student, Molecular and Cellular Biology Program
Email: lkj21@uw.edu

I am interested in understanding the mechanisms H. pylori uses to adapt and persist within its human host during periods of chronic infection. To do this I take a functional genomics approach, using both next-gen sequence data to compare populations over time and basic genetic tools and techniques to identify specific factors that facilitate adaptation during chronic infection.

Ali Meyer

Ali Meyer

Title: Research Technician

Along with making sure things run smoothly in the lab, I am also involved in many research projects. In particular I am interested in determining what genes are important for H. pylori colonization of the stomach, and what genes are necessary for its persistence. 

Valerie O'Brien

Valerie O'Brien

Title: Post-Doctoral Research Fellow

My research expertise is in chronic bacterial infections and their impact on the host. In the Salama lab I am using mouse models and human tissue samples to investigate the molecular mechanism(s) through which chronic Helicobacter pylori infection leads to the development of gastric cancer.

Vessel sculpture and Arnold Building on Fred Hutch campus

Armando Rodriguez

Title: Undergraduate Researcher
Sophie Sichel

Sophie Sichel

Title: Graduate Student, Molecular Medicine and Mechanisms of Disease Program

I am investigating how a cytoskeletal protein in H. pylori helps the bacteria maintain its characteristic helical cell shape and how this shape promotes pathogenesis. To understand how this protein defines H. pylori’s helical cell shape I use bacterial genetics, multiple types of microscopy, and biochemical techniques. Additionally, I use 2D gastric organoid models to understand how modulating the shape of H. pylori impacts its ability to colonize the gastric epithelium and cause disease.

Jenny Taylor

Jenny Taylor

Title: Graduate Student, Microbiology
Email: jatay@uw.edu

I study how peptidoglycan (PG) metabolism, cell envelope structure, and cytoskeletal proteins contribute to the helical shape of H. pylori. To study PG metabolism and cytoskeletal proteins, I use metabolic probes to label PG and immunofluorescence to label cytoskeletal proteins. I image slides using 3D structured illumination microscopy (SIM) and perform image analysis to determine if these signals have a preferential curvature localization. To study cell envelope structure, I use a microfluidics platform to determine the impact of osmotic and detergent treatments on cell shape.