SVM for Statisticians

Youyi Fong

Fred Hutchinson Cancer Research Institute

November 13, 2011
Primal Problem and Penalized Loss Function

- Minimize J over b, β and ξ under some constraints
 \[
 J = \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^{n} \xi_i
 \]
 \[
y_i (b + x_i \beta) \geq 1 - \xi_i
 \]
 \[
 \xi_i \geq 0
 \]

- Rewrite (2) as
 \[
 \xi_i \geq 1 - y_i (b + x_i \beta)
 \]

 Combining with (3), we have
 \[
 \xi_i \geq \max (1 - y_i (b + x_i \beta), 0) = \{1 - y_i (b + x_i \beta)\}_+
 \]

 When J is minimized, ξ_i should be equal to its lower bound simply because we are minimizing J over b, β and ξ. Thus effectively we are minimizing
 \[
 J = C \sum_{i=1}^{n} \{1 - y_i (b + x_i \beta)\}_+ + \| \beta \|^2
 \]

- The penalized loss form is convenient mathematically, but inconvenient for optimization because of the hinge loss function $\max (\cdot, 0)$.
- Primal formulation is convenient for optimization through the use of slack variables ξ_i.
Because the constraint (2) involves multiple parameters, it is difficult to handle. We dualize with respect to constraints (2) and (3). The primary Lagrangian is

\[L_p = \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i \{ y_i (b + x_i \beta) - 1 + \xi_i \} - \sum_{i=1}^{n} \gamma_i \xi_i. \]

(5)

\[L_p \] has to be minimized with respect to \(\beta, b \) and \(\xi_i \), and maximized with respect to non-negative Lagrange multipliers \(\alpha_i \) and \(\gamma_i \). Taking derivatives with respect to the primal space variables, we get

\[\beta = \sum_{i=1}^{n} \alpha_i y_i x_i \]

(6)

\[\sum_{i=1}^{n} \alpha_i y_i = 0 \]

(7)

\[C = \alpha_i + \gamma_i \]

(8)
Plugging (6)-(8) back into (5), we get the dual variables Lagrangian

\[
L_d = \frac{1}{2} \|\beta\|^2 + \sum_{i=1}^{n} (C - \alpha_i - \gamma_i) \xi_i - \sum_{i=1}^{n} \alpha_i y_i \left(b + x_i^T \beta \right) + \sum_{i=1}^{n} \alpha_i
\]

\[
= \frac{1}{2} \beta^T \beta - \sum_{i=1}^{n} \alpha_i y_i x_i^T \beta + \sum_{i=1}^{n} \alpha_i \quad \text{by (7) and (8)}
\]

\[
= \left(\frac{1}{2} \beta^T - \sum_{i=1}^{n} \alpha_i y_i x_i^T \right) \beta + \sum_{i=1}^{n} \alpha_i
\]

\[
= -\frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^T x_j + \sum_{i=1}^{n} \alpha_i \quad \text{by (6)}
\]

We are to maximize \(L_d \) under two constraints that come from (7) and (8) and with the non-negativity of Lagrange multipliers

\[
\sum_{i=1}^{n} \alpha_i y_i = 0 \quad (9)
\]

\[
0 \leq \alpha_i \leq C \quad (10)
\]

Comparing this set of constraints to the contraints of the primal problem, (2), we see that they involve one variable at a time. This allows for simple decomposition algorithms to work
KKT Conditions

- Stationarity
- Primal and dual feasibility
- Complementary slackness

\[\alpha_i \{ y_i (b + x_i \beta) - 1 + \xi_i \} = 0 \]
\[(C - \alpha_i) \xi_i = 0 \]
Intercept-free Model

- If we don’t want b to be in the model, as in AUC work, we can set $b = 0$. As a result, the constraint (7)/(9) do not apply.
- b is also known as the bias term.
Weighted SVM

- Suppose we want to maximize
 \[J = C \sum_{i=1}^{n} w_i \{1 - y_i (b + x_i \beta)\} + \|\beta\|^2, \]

- The primary Lagrangian becomes
 \[L_p = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{n} w_i \xi_i - \sum_{i=1}^{n} \alpha_i \{y_i (b + x_i \beta) - 1 + \xi_i\} - \sum_{i=1}^{n} \gamma_i \xi_i \]

 Constraint (8) becomes
 \[C \omega_i = \alpha_i + \gamma_i \]

- Dual variables Lagrangian becomes
 \[L_d = \frac{1}{2} \|\beta\|^2 + \sum_{i=1}^{n} (C \omega_i - \alpha_i - \gamma_i) \xi_i - \sum_{i=1}^{n} \alpha_i y_i \{b + x_i \beta\} + \sum_{i=1}^{n} \alpha_i \]
 \[= -\frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^T x_j + \sum_{i=1}^{n} \alpha_i \quad \text{by (6)} \]

 under the constraint
 \[\sum_{i=1}^{n} \alpha_i y_i = 0 \]
 \[0 \leq \alpha_i \leq C \omega_i \]

- The KKT complementary conditions are
 \[\alpha_i \{y_i (b + x_i \beta) - 1 + \xi_i\} = 0 \]
 \[(w_i C - \alpha_i) \xi_i = 0 \]
A decomposition algorithm chooses a subset of variables to optimize at each iteration.

- **Working set size and selection strategy**
 - SVMlight defaults to 10
 - according to steepest gradient, while satisfying all constraints (Joachims 1998)
 - once in a while, select a somewhat random working set to escape ‘dead zone’ (svmlight code)
 - libsvm only supports 2. First var is chosen based on gradient, and the second var is chosen based on second order information (Fan et al 2005)
 - Burges (1998) mentions conjugate gradient
 - In our experience, set size of 2 works better than set size of 1 (as illustrated on the next slide)
Decomposition Algorithm (cont’d)

- Other heuristics/tricks
 - Shrinking (Joachims, 1998). Only choose working set from a subset of total variables
 - Caching. This happens at several levels.
 - Burges (1998)

- To optimize a working set is to solve a constrained quadratic problem. Many optimizers can be used.
 - SVMlight uses Hideo’s optimizer
 - minQuad (explained in the next few slides)
SVM software

- svmlight
 - main advantage is the subproblem is not restricted to two variables
 - implements null bias/intercept
 - klaR R package

- libsvm
 - handles more types of svm models (but none of the extended model solves $\alpha^T Q \alpha + b^T \alpha$, where $b \neq 1$
 - does not implement null bias/intercept
 - e1071 R package

- svmw

- aucm
One-class SVM

Usual SVM

\[
\begin{align*}
\text{minimize} & & \| w \|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{subject to} & & y_i (\langle \Phi (x_i), w \rangle + b) \geq 1 - \xi_i \\
& & \xi_i \geq 0
\end{align*}
\]

One-class SVM

minimizes \[
\| w \|^2 - \rho + C \sum_{i=1}^{n} \xi_i
\]
subject to \[
y_i (\langle \Phi (x_i), w \rangle + b) \geq \rho - \xi_i \\
\xi_i \geq 0
\]
Acknowledgement

- Shuxin Yin
- Krisztian Sebestyen

