Package ‘MiRKATS’

May 30, 2016

Type Package
Title Microbiome Regression-based Kernal Association Test for Survival (MiRKAT-S)
Version 1.0
Date 2016-04-22
Author Anna Plantinga <aplantin@uw.edu>, Michael Wu <mcwu@fhcrc.org>
Maintainer Anna Plantinga <aplantin@uw.edu>
Depends survival, CompQuadForm, GUniFrac
Description Community level test for association between microbiome composition and survival outcomes via user-defined kernel or distance matrices. Recommended distances include the UniFrac and generalized UniFrac distances and the Bray-Curtis dissimilarity metric.
License GPL (>= 2)
NeedsCompilation no

R topics documented:

D2K ... 1
MiRKATS .. 2

D2K Construct kernel matrix from distance metric

Description

Construct kernel matrix from distance matrix (matrix of pairwise distances) for microbiome data.

Usage

D2K(D)
Arguments

D
An n by n matrix giving pairwise distances or dissimilarities, where n is the sample size.

Details

The kernel matrix is constructed as
\[K = -(I - 11' / n)D^2(I - 11' / n) / 2, \]
where D is the pairwise distance matrix, I is an identity matrix and 1 is a vector of 1. \(D^2 \) represents element-wise square. To ensure that K to be positive semi-definite, a positive semi-definiteness correction is conducted.

Value

An n by n kernel or similarity matrix corresponding to the distance matrix.

Author(s)

Ni Zhao

References

Examples

```r
require(GUniFrac)
# Load in data and create a distance metric
data(throat.tree)
data(throat.otu.tab)
unifracs = GUniFrac(throat.otu.tab, throat.tree, alpha = c(1))$unifracs
D1 = unifracs[, , "d_1"]
# Function
K = D2K(D1)
```

MiRKATS
Microbiome Regression-based Kernel Association Test for Survival

Description

Community level test for association between microbiome composition and survival outcomes (right-censored time-to-event data) using kernel matrices to compare similarity between microbiome profiles with similarity in survival times.

Usage

MiRKATS(kd, distance = FALSE, obstime, delta, covar = NULL, beta = NULL, perm = FALSE, nperm = 1000)
MiRKATS

Arguments

- **kd**: A numeric n by n kernel matrix or matrix of pairwise distances/dissimilarities (where n is the sample size).
- **distance**: Logical, indicating whether kd is a distance matrix (default = FALSE).
- **obstime**: A numeric vector of follow-up (survival/censoring) times.
- **delta**: Event indicator: a vector of 0/1, where 1 indicates that the event was observed for a subject (so "obstime" is survival time), and 0 indicates that the subject was censored.
- **covar**: A vector or matrix of numeric covariates, if applicable (default = NULL).
- **beta**: A vector of coefficients associated with covariates. If beta is NULL and covariates are present, coxph is used to calculate coefficients (default = NULL).
- **perm**: Logical, indicating whether permutation should be used instead of analytic p-value calculation (default=FALSE). Not recommended for sample sizes of 100 or more.
- **nperm**: Integer, number of permutations used to calculate p-value if perm==TRUE (default=1000).

Details

obstime, delta, and covar should all have n rows, and the kernel or distance matrix should be a single n by n matrix. If a distance matrix is entered (so distance=TRUE), a kernel matrix will be constructed from the distance matrix.

Missing data is not permitted. Please remove individuals with missing data on y, X or in the kernel or distance matrix prior to using the function.

The Efron approximation is used for tied survival times.

Value

P-value obtained using small sample correction

Author(s)

Anna Plantinga

References

Examples

Generate data
require(GUniFrac)
set.seed(1)

Throat microbiome data
data(throat.tree)
data(throat.otu.tab)
unifracs = GUniFrac(throat.otu.tab, throat.tree, alpha = c(1))$unifracs
D1 = unifracs[,"d_1"] # 60 subjects

Covariates and outcomes
X <- matrix(rnorm(120), nrow=60)
S <- rexp(60, 3)
C <- rexp(60, 1)
D <- (S<=C) # event indicator
U <- pmin(S, C) # observed follow-up time

MiRKATS(kd = D1, distance = TRUE, obstime = U, delta = D, covar = X, beta = NULL)
Index

D2K, 1
MiRKATs, 2