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interacting proteins reveals that the two methods differ to
some degree in the type of proteins identified (Figure 1C).
Y2H clearly identified more proteins involved in protein
turnover, signal transduction, and transcription, while MS

Tissue
HEK293, M17
MM

MB

HB
HEK293
MM
MM

MB

MB

HB

MM

HB

identified more proteins involved in metabolic processes.
However, proteins involved in cytoskeletal or protein-
trafficking processes were similarly represented among the
Y2H and MS data. Overall, there was little overlap of specific
- c- YAt cc-<m interacting proteins between the two datasets. Only four
high-confidence proteins were found using both methods:
clathrin, pyruvate kinase, GAPDH, and YWHAB (Tables S1
and S2). Two of these, clathrin and GAPDH have been
previously reported to associate with Htt fragments [35,36].

To directly address the biological relevance of the Htt-
fragment protein-interaction dataset and to assess the
relative validity of results generated using the Y2H and MS

Validated
Peptides

Gl Number
25453472
6679567
12851679
640298
7705851
18079334
21313618
20373167
6754720
27754174
10181204
19923362

methods, we tested a sample of interacting proteins in a high-
content independent method, a genetic modifier assay in a fly
model of polyQ toxicity.

XP_203393.2

NP_057223.1

NP_077128.2

NP_079612.1
NP_619621.1

NP_034944.1

NP_776169.2

NP_065503.1
NP_006279.2

NP_000602.1°

RefSeq
NP_001951.2°
NP_033012.1

Validation of Htt-Fragment-Interacting Proteins in a
Drosophila Model of PolyQ Toxicity

An arbitrary sample of 60 proteins in the dataset was
tested for the ability to modify an Htt-fragment-induced
neurodegeneration phenotype in Drosophila. This polyQ
toxicity model was generated using an N-terminal fragment
of the human HD cDNA, encoding the first 336 amino acids
of the protein, including a 128 Q expansion in exon 1 (see
Materials and Methods). Directed expression of this ex-
panded human HD transgene fragment in the Drosophila eye
causes a neurodegenerative phenotype evident by external
examination and retinal histology. Of the 234 nonredundant
mammalian protein interactors found in the MS and Y2H
screens, 213 had apparent orthologs in Drosophila (unidirec-
tional top hit with BLAST score less than 107%), and 127 of
these had available Drosophila stocks suitable for screening.
We tested 60 of these, divided roughly equally between genes
discovered using Y2H (35) and MS (28) methods (including
three genes found in common), for possible genetic
interactions in the fly model of polyQ toxicity (Table S4). A
total of 48 of the 60 genes in the sample (80%) either
enhanced or suppressed the expanded Htt-fragment-induced
neurodegeneration in the Drosophila eye when tested in
either over-expressing or in partial loss-of-function strains
(Tables 3 and S5). In some cases a modifier effect was

eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange

protein)
coiled-coil-helix-coiled-coil-helix domain containing 2

coiled-coil-helix-coiled-coil-helix domain conta
coiled-coil-helix-coiled-coil-helix domain containing 3

CD59 molecule, complement regulatory protein
LUC7-like 2 (S. cerevisiae)

plasma membrane associated protein, S3-12

polymerase | and transcript release factor
Thy-1 cell surface antigen

proline-rich polypeptide 6
myelin oligodendrocyte glycoprotein

neuronal growth regulator 1

Name

observed, but only one background strain could be tested
(Table S5). However, for 27 of these genes, modification
either by more than one allele or in more than one genetic
background was observed. These genes comprise a high-
confidence set of genetic modifiers of mutant Htt-fragment
toxicity (Figures S3 and S4; Table 3). The 27 high-confidence
modifiers represent a 45% validation rate among those
interactors tested. Since the collection of genes tested in the
fly assay represented an arbitrary sample of the protein
interaction collection, this result indicates that as much as
half of the proteins in our dataset may be modifiers of
mutant Htt toxicity. The hit rate for genetic modifiers seen
among our interactors is an order of magnitude higher than
the expected 1%-4% typically observed in unbiased genetic
screens [37-39], including a comparable modifier screen
using a Drosophila model of the polyQ disease spinocerebellar
ataxia type 1 [40]. Validation rates for proteins discovered by

CHCH2_HUMAN
CHCH2_MOUSE
CHCH3_MOUSE
LC7L2_MOUSE
MOG_MOUSE
THY1_HUMAN

Q6PIA5_MOUSE

Gene Identification
CD59_HUMAN

EF1D_HUMAN
PTRF_MOUSE
NEGR1_HUMAN
088492_MOUSE

unknown

7

PHuman protein whose mouse protein homolog (determined by HOMOLOGENE, NCBI) was also found in pull downs (see Supporting Information).

HB, human brain; MB, mouse brain; MM, mouse muscle.

Human cell lines used were HEK293, Hela, and M17 neuroblastoma.
doi:10.1371/journal.pgen.0030082.t001

Table 1. Continued.
?Additional GI numbers were matched (not shown).

Functional Category

Other;
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either Y2H (27135 or 77%) or MS (21/28 or 75%) methods
were similar, indicating that these methods are comparable
in their ability to uncover biologically relevant interactions
(Table 3). These relative validation rates demonstrate further
that the MS and Y2H datasets are complementary in nature
and that each dataset is similarly enriched for genes and
proteins that modify mutant Htt toxicity in vivo. Further-
more, the majority of these modifiers were discovered in
interaction screens performed with human brain protein
extracts or brain-derived cDNA libraries indicating that they
are expressed in tissues relevant to HD (Tables 1 and 2).

Among the 27 high-confidence modifiers, partial loss-of-
function mutations were tested for 27 of them and over-
expression mutations for nine. A total of 18 of the modifiers
behaved as suppressors of neurodegeneration, (14 by partial
loss-of-function and four by over-expression) (Figure S3),
whereas 18 behaved as enhancers (13 by partial loss-of-
function and five by over-expression) (Figure S4). In all 13
cases where both over-expression and loss-of-function alleles
were tested, suppression was observed in one condition and
enhancement in the other. These modifiers cluster into
several functional groups including proteins involved in
cytoskeletal organization and biogenesis, signal transduction,
synaptic transmission, proteolysis, and regulation of tran-
scription or translation (Table 3). Histological analysis of eye
phenotypes from representative enhancers and suppressors
from each of these groups is shown (Figure 2).

One interesting subset of modifiers is a group of proteins
involved in SNARE-mediated vesicle fusion [41,42]. This
includes STX1A, NAPA, and the voltage-gated calcium
channel delta subunit CACNA2DI1. Interestingly, alleles
encoding all of these proteins act both as loss-of-function
suppressors and gain-of-function enhancers in the fly assay.
Collectively, these modifier results point toward a model of
Htt toxicity involving dysregulation in synaptic function at
the level of SNARE-mediated vesicle fusion.

Additional experiments were performed to further validate
a role for a SNARE component in modifying mutant Htt
toxicity (Figure 3). In contrast to expression in the eye, pan-
neural expression of N-terminal expanded Htt leads to a
shortened lifespan in the fly model of polyQ toxicity. Pan-
neural expression also results in late-onset progressive motor
dysfunction that can be quantified in terms of climbing
performance as a function of age. These behavioral assays
confirm the results obtained in the eye assay: partial loss-of-
function of STX1A ameliorates both the disorganization and
fusion of ommatidia seen in flies expressing the gene that
encodes N-terminal expanded Htt as well as the retinal
degeneration. The shortened life-span and the late-onset
progressive motor dysfunction phenotypes were also im-
proved by a partial loss-of-function of STX1A, confirming
that the modifier effects seen in the eye were not limited to a
particular phenotypic assay (Figure 3B and 3C). Htt is known
to interact with proteins involved in endocytosis and vesicle
trafficking such as PACSIN1, HAP1, HIP1, and HIP14 [22],
however, this is the first report showing that Htt interacts
directly with the SNARE complex and that partial loss-of-
function can suppress mutant Htt toxicity.

A network summarizing interactions relevant to Htt and
proteins with gene ontology annotations (http://www.
geneontology.org) related to vesicle traffic and/or neuro-
transmission is shown in Figure 4. Included here are Y2H
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interactions (rectangles and thick lines) and proteins identi-
fied by MS (ovals) in pull downs using lysates prepared from
mouse and/or human brain tissue (set included in dotted
circle). A total of 11 proteins in this interaction subnetwork
(shown in red) are encoded by human orthologs of genes
shown to act as modifiers in the Drosophila model of polyQ
toxicity (Tables 3 and S3). Notably, several modifiers are
present in a highly connected cluster of Htt-fragment-
interacting proteins known to function in receptor-mediated
endocytosis: CLTC, AP2A2, AP2B1, PACSINI, and DNMI.
The observations that Htt is localized to endosomal vesicles
and associated with clathrin in fibroblasts derived from HD
patients [5,43] and that vesicle associated proteins are found
in Htt-fragment inclusions [44] makes this interconnected
cluster of modifiers particularly striking. Curated Htt-frag-
ment-interacting proteins obtained from BioGRID (http://
www.thebiogrid.org) [45] and/or the Human Protein Refer-
ence Database (http:/lwww.hprd.org) [46,47] are included in
the network. These bridging proteins (blue triangles) repre-
sent all curated interactions contained in these databases that
connect HD to at least one other protein in the subnetwork
though a single protein node and link some of our novel Y2H
interactions and MS associations to known Htt-interacting
proteins (e.g., HIP1, GIT1). Together, this interaction network
provides additional proof that our dataset is enriched for
proteins that are important in HD pathogenesis and under-
scores the role of proteins involved in vesicle traffic as being
relevant to HD function and pathology.

Validation of Htt-Fragment-Interacting Proteins Using
Immunoprecipitation

For further in vivo validation of Htt-fragment protein
interactions in mammalian tissue, we performed co-immu-
noprecipitation experiments from brains of wild-type mice
and mice expressing a 128 Q full length YAC transgene [48].
Figure 5 shows the results of co-immunoprecipitation experi-
ments using antibodies raised against Htt-fragment-interact-
ing proteins. In all, we observed co-immunoprecipitation
with seven of 11 interacting proteins tested. These included
the SNARE-associated proteins STX1A and CACNA2D1, both
of which are modifiers in the Drosophila assay. We also
observed co-immunoprecipitation with SNAP25 (another
SNARE component). Other modifiers observed to associate
with Htt in mouse brain were the ubiquitin hydrolase USP9X
and the proteasome component PSMC2. None of these
interacting proteins appeared to show a strong preference
for wild-type versus CAG expanded Htt in this assay.
Immunoprecipitation using antibodies directed against
GAPDH and PARP are included as positive and negative
controls. We observed a polyQ length-dependent association
of GAPDH with Htt. The GAPDH protein has been reported
to bind Htt and act as a modifier of mutant Htt toxicity
[36,49].

Overall, in this sample, we observed a 60% validation rate
in this assay (seven of 11 proteins tested). Of the seven
proteins observed to co-immunoprecipitate with Htt from
mouse brain, three were discovered using Y2H (CULZ,
PSMC2, and USP9X), two were discovered using MS (STXIA
and SNAP25), and one by both methods (PKM2). This further
underscores a specific utility of both methods for discovery of
interacting proteins.
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Figure 2. Modification of the Phenotypes Caused by N-Terminal Expanded Htt in the Drosophila Eye

Retinal sections of adult Drosophila eyes show modification of the phenotypes caused by expression of different levels (B and I) of a transgene encoding
an N-terminal expanded Htt fragment. Enhancers (C-G) and suppressors (J-N) include proteins involved in cytoskeletal organization (C) and (J), signal
transduction (D) and (K), neurotransmitter secretion (E) and (L), proteolysis/peptidolysis and the ubiquitin cycle (F) and (M), and transcriptional/
translational regulation (G) and (N). Retinal sections of day 5 control flies cultured at 25 °C expressing the gene that encodes expanded N-terminal Htt
fragment (GMR-GAL4/+; UAS:128Qhtt[M64]/+) (B) show a degenerative phenotype when compared to controls of the same age and cultured at the same
temperature (GMR-GAL4/+) (A). The phenotype consists of a shortening (see arrow) and detachment of the retina, as well as the presence of vacuoles in
the retina. The Htt-fragment-induced phenotype can be enhanced by (C) reduced levels of zipper (GMR-GAL4/P{PZ}zip??*’; UAS:128Qhtt[M64]/+), (D)
reduced levels of Src oncogene at 42A (GMR-GAL4/P{lacW}Src42AX'°™8; UAS:128Qhtt[M64]/+), (E) overexpression of soluble N-ethylmaleimide-sensitive
-attachment protein (GMR-GAL4/+; UAS:128Qhtt[M64]/UAS-S102C#2D), (F) reduced levels of fat facets (GMR-GAL4/+; UAS:128Qhtt[M64]/faf®*%), and (G)
reduced levels of crooked legs (GMR-GAL4/P{PZ}croI°4“Bcn]; UAS:128Qhtt[M64]/+). None of these mutations cause an abnormal eye phenotype in flies
carrying the GMR-GAL4 driver but not the UAS:128Qhtt[M64] transgene (unpublished data). However, when combined with an N-terminal expanded Htt
fragment, they lead to an even larger decrease in retinal thickness sometimes accompanied by an increase in retinal detachment and vacuolization.
Retinal sections of day 1 control flies cultured at 27 °C expressing a gene that encodes an expanded N-terminal Htt fragment (GMR-GAL4/+;
UAS:128Qhtt[M64]/+) () show a severe degenerative phenotype when compared to GMR controls of the same age and cultured at the same
temperature (H). The phenotype consists of a shortening (see arrow) and detachment of the retina, as well as the presence of vacuoles in the retina.
The Htt-fragment-induced phenotype can be suppressed by (J) reduced levels of hu i tai shao (GMR-GAL4/P{lacW}hts"°®'2"; UAS:128Qhtt[M64]/+), (K)
reduced levels of G protein iosubunit 65A (GMR-GAL4/; UAS:128Qhtt[M64]/P{SUPor-P}G-ia65A*°19%7y%8) (1) reduced levels of clathrin heavy chain
(Chc'/+ GMR-GAL4/+; UAS:128Qhtt[M64]/+), (M) reduced levels of Rpt1 (GMR-GAL4/P{PZ}Rpt19°®*3cn’; UAS:128Qhtt[M64]/+), and (N) reduced levels of
myocyte enhancing factor 2 (GMR-GAL4/Df(2R)X1,Mef2[X1]; UAS:128Qhtt[M64]/+). These mutations decrease the vacuolization and increase the retinal
thickness as well as virtually eliminating the retinal detachment.

doi:10.1371/journal.pgen.0030082.g002

Discussion (Table 3), and SNAP25, STX1a, and CACNA2D1 proteins

were observed to co-immunoprecipitate with full length Htt
Although the gene encoding Htt was identified over a from mouse brain (Figure 5). Protein interactions and
localization experiments have placed Htt primarily at
postsynaptic sites (reviewed in [55]), but Htt has also been
shown to be associated with N-type calcium channels in

presynaptic cells [56]. These results suggest that modulation

decade ago, the normal function of this protein and the
precise mechanisms by which expanded polyQ) exerts its toxic
effects remain the subjects of intense inquiry. In this study we
identified 234 potential new Htt-associated proteins using

high-throughput proteomic screens. The diverse functions of
Htt and Htt-fragment protein partners and modifiers
reported here are consistent with the functional diversity of
pathogenic processes and targets in HD. Htt is localized to a
number of different cellular compartments, and there is a
large body of evidence showing that mutant Htt fragments
can interfere with a diverse range of proteins and pathways
including, transcriptional activation and co-activation
[12,13,15], ubiquitin-mediated proteolysis [50], mitochondrial
energy metabolism [51,52], receptor-mediated signal trans-
duction [53], axonal transport [54], and vesicle trafficking
[43,44]. These observations suggest models of Htt-mediated
pathology that involve interference in multiple cellular
pathways.

Furthermore, we have identified a novel association
between Htt fragment and components of the vesicle
secretion apparatus (Table 1). Stx1A, NAPA, and CACNA2D1
were confirmed as modifiers in the fly polyQ toxicity model

@ PLoS Genetics | www.plosgenetics.org

of SNARE-mediated neurotransmitter secretion may be a
normal function for Htt and/or may be perturbed by mutant
Htt.

In addition to the general large-scale protein interaction
screens reported for human proteins, two screens have been
reported that focus specifically on proteins related to polyQ
disease. A large-scale Y2H screen for Htt-fragment binding
proteins uncovered 15 novel interacting proteins, including
GIT1, an enhancer of polyQ aggregation [57]. A more recent
screen for protein interactions relevant to inherited ataxias
reported a large network of interaction involving 54 proteins
implicated in human ataxia [29]. Interestingly, there was more
overlap between high-confidence interactions in our dataset
and the previously published Htt dataset [57] than the ataxia
dataset [29], suggesting that protein-protein interactions may
contribute to pathogenic specificity found among the polyQ
diseases. Validation of interactions in the ataxin network
study relied on demonstration of co-affinity precipitation of

May 2007 | Volume 3 | Issue 5 | €82
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Figure 3. Modification of the Expanded Htt-Fragment-Induced Phenotype by a STX1A Loss-of-Function Mutation
Modification was observed both in the eye (external phenotype and retinal sections) and in the nervous system (climbing ability and survival).

(A) Retinal sections of day 5 flies raised at 25 °C (left), day 1 flies raised at 27 °C (middle), and standard error of mean of day 5 flies raised at 29 °C (right)
expressing a gene that encodes expanded N-terminal Htt fragment (GMR-GAL4/+; UAS:128Qhtt[M64]/4).

(B) Retinal sections of day 5 flies raised at 25 °C (left), day 1 flies raised at 27 °C (middle), and standard error of mean of day 5 flies raised at 29 °C (right)
expressing a gene that encodes expanded N-terminal Htt fragment and carrying reduced levels of STX1A (GMR-GAL4/+; UAS:128Qhtt[M64]/
Syx1A229ry506). Note suppression of both the retinal and external eye phenotypes at all three temperatures. Overexpression of STX1A shows
enhancement of the retinal degeneration and external 128 Qhtt phenotype (unpublished data).

(Q) Climbing assay (top) and survival assay (bottom) results confirm the suppression observed in the eye assay. Shown in red/pink are the climbing
performance and survival curve of a population of females flies expressing a gene that encodes expanded N-terminal expanded Htt fragment (elav-
GAL4/+; UAS:128Qhtt[F27B]/+). Shown in blue/light blue are the improved climbing performance and survival curve of a population of females flies
expressing a gene that encodes expanded N-terminal Htt fragment and carrying a heterozygous loss-of-function mutation in STX1A (elav-GAL4/+; +/+;

UAS:128Qhtt[F27B]/Syx1A229 ry506). (x-Axis, age of flies in days; y-axis, percent surviving or climbing flies; LOF, loss-of-function).

doi:10.1371/journal.pgen.0030082.g003

tagged expressed protein pairs. Here we tested the ability of a
genetic model to validate protein interactions. 48 of 60 genes
tested in a polyQ-induced fly eye degeneration model of HD
modified the polyQ-induced toxicity, suggesting that this list
contains protein interactors that also genetically interact
with Htt. Our validation rate using the Drosophila genetic
model (80%) is similar to that found using co-affinity
purification in the ataxia and Htt studies (80% and 65%,
respectively) [29,57]. Moreover, whereas co-affinity purifica-
tion gives validation of the physical interaction of proteins,
the genetic modification screen provides additional informa-
tion suggesting a biological role in genetic pathways relevant
to HD. Overall, these observations demonstrate the utility of
combining protein-interaction screening with genetic-inter-
action screening to provide insight into disease mechanisms
and identify potential targets for therapeutic intervention.

@ PLoS Genetics | www.plosgenetics.org

Whereas our datasets more than quadruple the potential
number of interactions attributed to Htt or Htt fragments,
the in vitro derived interactor datasets do contain non-
relevant interactions (false positives) and do not represent all
binding proteins (false negatives), an issue common to high-
throughput screens. For example, despite the saturation of
the screens we identified some, but not all, of the known Htt-
fragment-interacting proteins. Our protein interaction
screens revealed 14 of the 40 interactions previously
discovered using Y2H methods [22,23]. Using different Y2H
methods, a recent high-throughput screen isolated 19 Htt-
fragment-interacting proteins, four of which had been
previously described [57]. Together, these data suggest that
different Y2H methods yield overlapping but not identical
datasets, likely due to differences in selection stringency as
well as other technical differences. Surprisingly, only Htt

May 2007 | Volume 3 | Issue 5 | €82
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Figure 4. A Network of Protein Interactions Involved in Vesicle Traffic

A network is shown that includes protein interactions described in this
study and interactions curated from the public domain (NCBI Entrez
Gene). Htt-fragment-interacting proteinss found in this study are
indicated as ovals (MS) or rectangles (Y2H). Binary Y2H interactions
found in this study are indicated as thick lines. Proteins contained in the
dotted circle were identified in Htt-fragment pull downs using brain
lysates. Thin lines indicate curated protein interactions. Curated bridging
interactions (blue triangles) are defined as proteins reported to interact
with HD and at least one other protein in the network. Proteins whose
Drosophila ortholog genes acted as modifiers in this study are indicated
in red.

doi:10.1371/journal.pgen.0030082.g004

curated interaction

+ cohort from brain pull-down

fragments near the N terminus of the protein were able to
generate reproducible protein interaction in our Y2H
screens (Table 2). This finding is consistent with a previous
report in which Y2H methods failed to detect interactions
from Htt-fragment baits outside the amino terminus [58] and
may be in part due to technical limitations of the Y2H
method. For example, C-terminal Htt fragments may not fold
properly in yeast, may require post-translational modifica-
tions not found in yeast for interaction with protein partners,
or may be localized away from the nucleus. Even fewer known
Htt-interacting proteins were found by pull-down/MS meth-
ods. Interestingly, the cytosolic chaperonin-containing -
complex (CCT or TriC) was recently shown to physically
interact with Htt and modify the course of polyQ-induced
toxicity in mammalian cells [59,60]. We found that two
components of the CCT complex, CCT6 and CCTS8, were
associated with Htt exon1 in pull downs. Together, these data
suggest that many potential Htt-interacting or Htt-associated
proteins remain to be discovered by other methods.

Overall, there was little overlap between interactions found
by the Y2H and pull-down methods (4/234). This low degree
of overlap is consistent with results seen in other systems-
scale protein interaction datasets generated using Y2H and
MS methods. For example, interaction screens of the yeast
proteome using Y2H (4,476 and 915 binary protein inter-

@ PLoS Genetics | www.plosgenetics.org
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Figure 5. Co-Immunoprecipitation of Huntingtin-Interacting Proteins
from YAC128 Mouse Brain

Htt was immunoprecipitated with mouse monoclonal Htt antibody and
probed with rabbit polyclonal Htt BKP1 antibody (top right panel). The
input for each protein (left panels) and resulting immunoprecipitation
are shown (right panels). The lower molecular weight band in the PKM2
immunoprecipitation is an immunoglobulin (IgG) band. GAPDH is
included as a positive control. PARP is included as a negative control.
doi:10.1371/journal.pgen.0030082.9005

actions) [27,28] and MS-based screens (3,767 and 3,727
interactions in proteins complexes) [25,26] yielded a 2%-
5% overlap. It has been suggested that this low overlap
between interaction screening methods may arise from
several factors including method-specific biases [34]. Ulti-
mately, the value of protein interaction data generated by any
method needs to be evaluated through experimental vali-
dation. We clearly demonstrate here that both methods are
similarly capable of identifying Htt-fragment-interacting

0704 May 2007 | Volume 3 | Issue 5 | €82



proteins that can be validated by assays based upon genetic
interaction and physical association in mammalian tissues
relevant to HD pathology.

Most specific molecular mechanisms proposed for Htt-
mediated pathogenesis can, in principle, be attributed to a
direct interaction between Htt and a protein component (or
components) of a given pathway. Consistent with this
assertion, we demonstrate here that a large set of Htt-
interacting proteins is highly enriched for genetic modifiers
of Htt-mediated neurodegeneration. Currently, there are
efforts directed toward discovering genetic modifiers of
human HD. Since the modifiers reported here were first
discovered in screens performed with mammalian genes and
proteins and subsequently validated in Drosophila, it would be
of interest to determine whether human gene variants
encoding similar proteins and pathway act can act as
modifiers in human neurodegeneration.

Materials and Methods

Y2H screens. Automated screens were done as described in
LaCount et al. [31]. Briefly, haploid yeast expressing Htt-bait fusion
proteins were grown in liquid medium in 96-well plates. Aliquots of
yeast of the opposite mating type expressing prey libraries were
added to each well and allowed to mate overnight. Matings were
plated on medium selecting for diploids, the expression of the
auxotrophic markers fused to the cDNA inserts and to the activity of
the metabolic reporter genes ADE2 and HIS3 [32,61]. cDNA prey
inserts from yeast that grew under selection were PCR-amplified and
sequenced. Identities of prey inserts were determined by BLAST
comparison against the National Center for Biotechnology (NCBI)
RefSeq database (http://www.ncbi.nlm.nih.gov). All reported interac-
tions were verified by recovering prey plasmids from positive
colonies, transforming these into yeast strains expressing Htt baits
and reconfirming the ADE+, HIS+ phenotype. Beta-galactosidase
measurements were performed according to manufacturer’s direc-
tions (Pierce, http:/lwww.piercenet.com). Control yeast strains carry-
ing Htt bait and prey plasmids without an insert were used as
baseline. The Htt 55 Q bait had slightly higher background levels than
the corresponding Htt 23 Q bait. Y2H interactor lists were filtered to
remove promiscuous proteins. Additional yeast methods can be
found in Supporting Information.

MS. Htt-fragment-interacting proteins underwent TAP and were
identified by MS [62]. Affinity-tagged Htt N-terminal fragments fused
to GST and 6 X His were incubated with protein lysates prepared
from mouse and human tissues and cultured cells. After TAP,
proteins were digested with trypsin, desalted, and subjected to strong
cation exchange (CEX). CEX fractions were further separated by
reverse-phase HPLC and subjected to MS analysis by matrix-assisted
laser desorption/ionisation-time of flight (MALDI)MS/MS and electro-
spray ionization MS/MS. MS/MS data were used for protein sequence
database searches by Mascot (Matrix Sciences, http://[www.
matrixscience.com) [63,64]. All searches were performed against the
subset of either human or mouse proteins in the NCBInr protein
sequence database (HumanNR or MouseNR). The minimum peptide
score was set at 10, and the minimum peptide length was set to 5;
otherwise the default instrument-specific Mascot settings were used.
A variable cut-off was applied to proteins, which was dependent upon
the number of peptides identified for a given protein. For any
protein from which only one peptide was identified, a minimal
peptide score threshold of 60 was required. If two peptides were
identified, a threshold ion score of 50 was required, and for three
peptides an ion score of 40 was required. Any peptides observed in
control pull downs done with beads bound to TAP-tag alone were
excluded. A statistical method, based on comparison of a wide variety
of pull downs, was used to identify nonspecific interactors, which
were also excluded. To validate protein identification subsequent to
the automated thresholding and initial filtering, each remaining MS/
MS spectrum was manually inspected to ensure that there were no
spurious results matched by Mascot. Detailed MS and statistical
methods can be found online with Supporting Information.

Drosophila polyQ toxicity model and genetic screen. A Drosophila
polyQ toxicity model was generated using an N-terminal fragment of
the human HD cDNA that encodes the first 336 amino acids of the

@ PLoS Genetics | www.plosgenetics.org
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protein including a 128-Q expansion in exon 1. The construct was
cloned into the pUAST vector for generating transgenic lines [65].
This HD Drosophila model is most similar to the expanded version (82
Q) of the N171 mouse model, which shows abundant intranuclear
inclusions [66] and neuronal degeneration [67]. Expression of the
128-Q N-terminal Htt fragment in Drosophila leads to neurodegener-
ative phenotypes. In the eye, these phenotypes are evident both
externally and in the retina following expression using the glass
multimer reporter (GMR)-GAL4 driver (Figures 2 and 3). In the
nervous system, Elav-GAL4-directed expression of the transgene leads
to progressive impaired motor ability and reduced life span (Figure
3C). Also as in the N171-82Q mouse, intranuclear inclusions are
observed in Drosophila neurons expressing the 128-Q N-terminal Htt
fragment (unpublished data).

For the modifier screen, females of the genotype y'w'’®; GMR-
GAL4/CyO; UAS:128QHtt[M64] were crossed to males from the mutant
strains. In cases where the mutation was on the X chromosome, the
cross was reversed. Crosses were incubated at 27 °C and 29 °C to
provide two different phenotypic readouts. Strains modifying the eye
phenotype were recrossed to verify the modification. Only genes that
consistently showed modification at different temperatures or using
different alleles were further analyzed. Potential modifiers behaving
as enhancers were tested for possible nonspecific eye phenotypes by
crossing them to control females of the genotype ylw”X; GMR-GAL4/
CyO.

For scanning electron microscopy (SEM) images, flies were crossed
at 29 °C and newly eclosed adults were aged for five days. Whole flies
were dehydrated in ethanol, critical-point dried, and analyzed with a
JEOL JSM 6100 microscope. For paraffin sections of enhancers, flies
were crossed at 25 °C and adults were aged for five days (for
suppressors, the crosses were done at 27 °C and the flies were aged for
one day). Adult heads and torsos were fixed in 4% formaldehyde/85%
ethanol/5% acetic acid, dehydrated, embedded in paraffin for vertical
semi-thin sections, and then stained with Hemathox.

For the climbing and survival assays, females of the genotype Elav-
GAL4; UAS:128QHtt[F27B] were crossed to males of the mutant
strains. Climbing assays were performed on 30 age-matched adult
virgin female flies raised at 27 °C as described [68]. The flies, placed in
a plastic vial, were tapped to the bottom of the vial, and the number
of flies above a 5-cm line was counted after 18 seconds. A total of ten
trials were performed every 48 hours. Each climbing and survival
experiment was repeated three times.

Immunoprecipitation. Whole brains from wild-type or YAC128
mice were lysed in T-PER (Pierce) with protease inhibitors (Complete
Mini, Roche Applied Science, http:/lwww.roche.com). Protein deter-
mination was carried out with the BCA method (Bio-Rad, http:/lwww.
bio-rad.com). Lysate (500 pg, 0.7 ml T-PER with protease inhibitors)
were precleared with mouse IgG beads (Sigma A6531, http:/lwww.
sigmaaldrich.com) and immunoprecipitated with monoclonal Htt
antibody (5 pl, Chemicon 2166, http://www.chemicon.com) by
incubating overnight at 4 °C and then with protein G (40 pl,
Amersham 17-0618-01, http://www.amersham.com). Beads were
washed 5X with TBS/0.05% Tween, sample was eluted with 1X sample
buffer (Invitrogen, http:/flwww.invitrogen.com) and then resolved
using 4%-12% Bis-Tris precast gels (Invitrogen). Western blot was
preformed, and blots were probed with rabbit antibody to USP9X
(1:200, Abcam 19879, http:/flwww.abcam.com), Cullin 2 (1:500, Abcam
1870), CACNA2D1 (1:200, Sigma CS105), Htt BKP1 (1:500), PARP
(1:300, BioMol SA253, http:/lwww.biomol.com), mouse monoclonal
GAPDH (1:100, Chemicon MAB374), STX1A (1:1000, Synaptic
Systems, 11001, http:/lwww.sysy.com), SNAP25 (1:1000, Santa Cruz
Biotechnology SC-7539, http:/lwww.scbt.com/), goat antibody PKM2
(1:500, Abcam 6191), and PSMC2 (1:1000, GeneTex 23322, http:/fwww.
genetex.com).

Supporting Information
Figure S1. Purified Htt Exon 1 Bait

Purified bait protein from the first and second purification steps was
separated by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) and silver stained. The presence of glutathione
S-transferase (GST) and Htt in the bands was confirmed by matrix-
assisted laser desorptionfionisation-time of flight MS and Western
blotting (not shown). The predicted size of the GST-Htt fusion
product is 53 kDa. We were unable to determine the difference in the
two GST-Htt bands by MS; they may represent expanded (48 Q) and
wild-type (22 Q) Htt fragments. The band at 28 kDa represents GST
and likely occurs from cleavage of the fusion product between the
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GST and the bait as we saw a band of this size with numerous
heterologous purified baits.

Found at doi:10.1371/journal.pgen.0030082.sg001 (575 KB PDF).
Figure S2. Saturation of Y2H Searches with Htt Baits

Only searches with N-terminal baits (amino acid 1-90, 23 Q; amino
acid 1-90, 55 Q; amino acid 1-450, 23Q; amino acid 1-450, 55 Q) that
gave at least one positive were included in the analysis. The x-axis
indicates numbers of screens performed. The y-axis shows the novel
discovery index for prey proteins (e.g., a value of 0.3 indicates that 30 %
of the preys seen in a search were not seen in a prior screen). A peak
near 525 searches corresponds to introduction of new prey libraries.

Found at doi:10.1371/journal.pgen.0030082.sg002 (529 KB PDF).
Figure S3. Suppressors of Fly Eye Phenotype

Retinal sections of day-1 control flies cultured at 27 °C expressing the
gene that encodes expanded N-terminal Htt (GMR-GAL4/M;
UAS:128Qhtt[M64]H+) (B) show a severe degenerative phenotype when
compared to (A) GMR-GAL4 controls of the same age and cultured at
the same temperature. The phenotype consists of a shortening (see
arrow) and detachment of the retina, as well as the presence of
vacuoles in the retina. The Htt-induced phenotype can be suppressed
by (C) reduced levels of armadillo (P{lacW}arm®®**; GMR-GAL4/
UAS:128Qhtt[M64]H-), (D) reduced levels of hu li tai shao (GMR-GAL4/
P{lacW}his""?!; UAS:128Qhtt[M64]/+), (E) reduced levels of M6 (GMR-
GAL4/%; UAS:128Qhtt[M64)/P{GTI}M6"“">*°), (F) reduced levels of
kinesin heavy chain (GMR-GAL4/b"pr' Khc%; UAS:128Qhtt[M64/A4). (G)
reduced levels of peanut (GMR-GAL4/P{SUP pr P-}pnut“¢?%7%;
UAS:128Qhtt[M64]+), SH) reduced levels of 14-3-3e (GMR-GAL4/;
UAShtt[M64)/14-3-3¢°""°), (1) reduced levels of G protein I a-subunit
65A (GMR-GAL4/: UAS:128Qhtt[M64]/P{SUPor-P}G-ia65AXC**"7yy>0%),
(J) reduced levels of Itp-r83A (GMR-GAL4H; UAS:128Qhtt[M64]/
P{PZ}Itp—rSJ"A056]61’)"06), (K) over-expression of Src oncogene at 42A
(GMR- GAL4/P{EPgy2} Src42A"Y"%>7. UAS:128Qhtt[M64J/), (L) reduced
levels of clathrin heavy chain (Che*+ GMR-GAL4M UAS:128Qhtt[M64]/
+), (M) reduced levels of soluble N-ethylmaleimide-sensitive factor
attachment protein (GMR-GAL4/; UAS:128Qhtt[M64J/SNAP™?), (N)
reduced levels of STX1A (GMR-GAL4H; UAS:128Qhtt[M64]/
rys%P{PZ}SQJxIAOH”), (O) reduced levels of Rptl (GMR-GAL4/
P{PZ}Rpt17°"™; UAS:128Qhtt[M64]/+), (P) reduced levels of Eip75B
(GMR-GAL4/; UAS:128Qhtt[M64)/P{PZ}Eip75B"7°*), (Q) reduced lev-
els of myocyte enhancing factor 2 (GMR-GAL4/Df(2R)X1,Mef2*';
UAS:128Qhtt[M64]A4), (R) reduced levels of crooked legs (GMR-
GALA/P{EPgy2}crol®™*%?) (S) reduced levels of Glycerol $ phos-
phate dehydrogenase (GMR-GAL#/Al'Gpdh™™; UAS:128Qht[M64]/+),
(T) reduced levels of Pdsw (GMR-GAL4/P{PlacZ}Pdsw"'’'"!;
UAS:128Qhntt[M64]/), and (U) reduced levels of porin (GMR-GAL4/
Pp{PlacWporin®?'?%; UAS:128Qhtt[M64]/+) and reduced levels of
CG12455 (GMR-GAL4/P{SUP or-P}CG124555600200. [AS:
128Qhtt[M64]H). These mutations decrease the vacuolization and
increase the retinal thickness as well as virtually eliminating the
retinal detachment.

Found at doi:10.1371/journal.pgen.0030082.sg003 (2.7 MB PDF).

Figure S4. Enhancers of Fly Eye Phenotype

(A) Age-matched controls cultured at the same temperature (GMR-
GAL4H).

(B) Retinal sections of day 5 flies expressing N-terminal 128-Q htt
(GMR-GAL4+; UAS:128Qhtt[M64]+) cultured at 25 °C show a
degenerative phenotype. The phenotype consists of a shortening
(arrow), vacuolization, and detachment of the retina. This phenotype
can be enhanced by (C) reduced levels of CAP (GMR-GAL4/P{SUPor-
PYCAPRCO85: UAS:128Qhtt{M64]4), (D) reduced levels of CLIP-190
(GMR-GAL4/P{SUPor-P}CLIP-190%°°**"; UAS:128Qhtt[M64]44), (E) re-
duced levels of LaminC (GMR-GAL4/P{PTTor-GB}LamC "*">%;
UAS:128Qhtt[M64]H+), (F) overexpression of M6 (GMR-GAL4/H;
UAS:128Qhtt[M64)/P{ EPgy2}M6™7%2), (G) reduced levels of zipper
(GMR-GAL4/P{PZ}zip"*"7; UAS:128Qhtt[M64]/+), (H) reduced levels of
short stop (GMR-GAL4/P{FRT(w")}GI3 shot’; UAS:128Qhit[M64J), (1)
overexpression of 14-3-3¢ (GMR-GAL4As; UAS:128Qhtt[M64]/14-3-3¢
SeerUASe.Ca) (1) overexpression of 14-3-3¢ (GMR-GAL4/ P{EPgy2}14-3-
3EY0P2, UAS:128Qhit[M64]4), (K) overexpression of G-io65A (GMR-
GAL4/ +; UAS:128Qhti[M64)/P{EPgy2} G-in65A"1>), (L) overexpres-
sion of Itp-r83A (GMR-GAL4/ -+ UAS:128Qhit[M64)/P{EPgy2}tp-
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r83ATY97222) (M) reduced levels of Lachesin (GMR-GAL4/P{PTT-
unl}LacGOOOM; UAS:128Qhtt[M64]H), (N) reduced levels of Src oncogene
at 42A (GMR-GAL4/P{lacW}Src42AM %1%, UAS:128Qhtt[M64]1+), (O)
overexpression of soluble NSF-attachment protein (GMR-GAL4H
UAS:128Qhtt[M64]IUAS-S102C#2D), (P) overexpression of SyntaxinlA
(GMR-GAL4H; UAS:128Qhtt[M64]IP{EP}Syx1A™%"%) (Q) reduced lev-
els of Aspartyl B-hydroxylase (GMR-GAL4/P{SUPor-P}Asph*¢0?%81,
UAS:128Qhtt[M64]H), (R) reduced levels of Dynein heavy chain 64C
(GMR-GAL4H; UAS:128Qhtt[M64]IP{SUPor-P} Dhc64CX¢?%53%)(S) re-
duced levels of fat facets (GMR-GAL4+; UAS:128tht[M64]/jqu’C4), (T)
overexpression of Rptl (GMR-GAL4/P{EP}Rpt1*"21°3,
UAS:128Qhtt[M64]H), (U) reduced levels of crooked legs (GMR-GAL4/
P{PZ}crol”**'%; UAS:128Qhtt[M64]H), (V) reduced levels of Phosphogluc-
onate isomerase (GMR—GAL4/Pg1'"NC'; UAS:1280Qhtt[M64]H), (W) reduced
levels of RhoGAP92B (GMR-GAL4/P{UAS-RhoGAP92B-dsRNA}2.2;
UAS:1280Qhtt[M64]H), (X) reduced levels of Unc-76 (P{lacW}Unc-
76977%% GMR-GALA4/; UAS:128QhttfM64]14), and (Y) overexpression
of CG12455 (GMR-GAL4/P{EPgy2}CG12455"Y°70; UAS:128Qhtt[M64]l
-+). These mutations do not cause an abnormal eye phenotype in
control flies carrying the GMR-GAL4 driver without the
UAS:128Qhtt[M64] transgene (unpublished data). However, when
combined with 128-Q htt, they lead to further decrease in retinal

thickness and in some cases increased retinal detachment and
vacuolization.

Found at doi:10.1371/journal.pgen.0030082.sg004 (2.8 MB PDF).
Table S1. Primary List of Peptides Identified in Pull Downs

Y indicates peptides that were manually validated and confirmed by
inspection of the MS spectra; A refers to ambiguous peptides that
could not be conclusively identified by manual validation of the MS
spectra.

Found at doi:10.1371/journal. pgen.0030082.5t001 (3.4 MB XLS).

Table S2. Primary List of Gene Sequences ldentified from Y2H
Positives with Htt-Fragment Baits

*The total number of unique interacting proteins refers to the
number of unique gene sequences identified in a database of positives
from nearly >250,000 high-throughput random Y2H searches
performed at Prolexys Pharmaceuticals (http://www.prolexys.com).

Found at doi:10.1371/journal.pgen.0030082.5t002 (580 KB DOC).
Table S3. Sequences of Positives Identified in Y2H Searches

Search ID is an identifier given each Y2H mating event (see Materials
and Methods). Positive ID is a unique identifier given to each positive
colony picked in Y2H searches. RefSeq ID, Gene Symbol, and Entrez
Gene ID refer to gene designations in the NCBI database (http:/lwww.
ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene). E__VALUE__EXP is the
negative log of the E value produced by the highest scoring BLAST hit
and has a maximum of 180 (corresponds to E value of 10E '*° or less).
Amino acid coordinates of HD baits are indicated relative to
NP__002102. Q-length repeats are shown in parentheses. HD bait
sequences may be represented multiple times if more than one search
generated positives. High-throughput sequencing was performed
unidirectionally for identification purposes and does not necessarily
represent the entirety of the clone. *Search ID 14291 (HD bait 1116-
1196) was identified in a search using a complex bait library rather
than individual bait clone.

Found at doi:10.1371/journal.pgen.0030082.5t003 (3.2 MB XLS).
Table S4. Drosophila Orthologs of Human Genes Tested in the Fly HD
Strain

Found at doi:10.1371/journal.pgen.0030082.5st004 (98 KB DOC).
Table S5. Drosophila Modifiers with Only One Confirmed Modifica-
tion Result

*Genes tested in Drosophila prior to statistical filtering; E, Enhancer; S,
Suppressor

Found at doi:10.1371/journal.pgen.0030082.5t005 (73 KB DOC).

Accession Numbers

The National Center for Biotechnology Information (NCBI) (http://
www.ncbinlm.nih.govlentrez/query.fcgi?db=Protein) accession num-
bers for MS studies (RefSeq) are: NP__000302.1, NP__000382.3,
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NP__000524.3,
NP__001367.2,
NP__001779.2,
NP__001907.2,
NP__002046.1,
NP__002329.2,
NP__003156.1,
NP__003365.1,
NP__004309.2,
NP__004491.1,
NP__004594.1,
NP__004997.4,
NP__005653.3,
NP__006279.2,
NP__006830.1,

NP__000602.1, NP__000708.1, NP_001019645,
NP__001377.1, NP_001419.1, NP_001753.1,
NP__001834.2, NP__001853.2, NP__001854.1,
NP__001914.2, NP__001951.2, NP__001990.1,
NP__002064.1, NP__002065.1, NP__002102.4,
NP__002536.1, NP__003033.2, NP__003124.1,
NP__003170.1, NP__003356.2, NP__003357.2,
NP__003366.2, NP__003696.2, NP__004246.1,
NP__004364.2, NP__004365.1, NP__004484.1,
NP__004539.1, NP__004542.1, NP__004543.1,
NP__004850.1, NP__004993.1, NP__004996.1,
NP__005156.1, NP__005264.2, NP__005268.1,
NP__005736.3, NP__005995.1, NP__006046.1,
NP__006308.3, NP__006576.2, NP__006810.1,
NP__008839.2, NP__009034.2, NP__009204.1,

NP__031407.2, NP__031457.1, NP__031464.1, NP__031669.2,
NP__031736.1, NP__031773.1, NP__031887.2, NP__031959.1,

NP__032246.2,
NP__033033.1,
NP__033441.1,

NP__032518.1,
NP__033321.1,
NP__033805.1,

NP__032644.2,
NP__033332.1,
NP__033851.1,

NP__033012.1,
NP__033333.2,
NP__033914.1,

NP__034053.1, NP__034078.1, NP__034438.1, NP__034442.1,
NP__034715.1, NP__034829.1, NP__034944.1, NP__035229.2,
NP__035253.1, NP__035523.1, NP__035558.1, NP__035824.1,
NP__035825.1, NP__036288.2, NP__036560.1, NP__036611.2,

NP__038709.1,
NP__058084.2,
NP__065593.1,
NP__077128.2,
NP__079589.1,

NP__057049.3,
NP__060064.2,
NP__066268.1,
NP_077173.1,
NP__079612.1,

NP__057223.1,
NP__061359.2,
NP__067541.1,
NP_077725.1,
NP__079634.1,

NP__057606.1,
NP__062681.1,
NP__075553.1,
NP__077745.2,
NP__079683.2,

NP__080175.1, NP__080720.1, NP__080971.2, NP__080979.1,
NP__084501.1, NP__114080.2, NP__149124.2, NP__443106.1,
NP__444427.1, NP__536846.1, NP__536849.1, NP__542970.1,
NP__570824.1, NP__598429.1, NP__613063.1, NP__619621.1,
NP__659409.2, NP__663493.1, NP__663589.2, NP__766024.1,
NP__776169.2, NP__796376.2, NP__849209.1, NP__976218.1,

XP__128725.4, XP__131103.3, XP__203393.2, and XP__622887.1.
The NCBI (GenelD) (http:/lwww.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=gene) accession numbers for Y2H studies are: 120, 161, 323,
1315, 1387, 1499, 1759, 1778, 1785, 2597, 3064, 3092, 3093, 3275, 3329,
3338, 3839, 4209, 4361, 4790, 5033, 5295, 5296, 5315, 5468, 5493, 5710,
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